Closing Tue: 13.3(2)

Closing Thu: $\quad 13.4,14.1$ Midterm 1 will be returned Tuesday.

Summary of TNB-Frame Facts:
Given $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)>$
$\boldsymbol{T}(t)=\frac{\boldsymbol{r} \boldsymbol{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}=$ unit tangent
$\boldsymbol{N}(t)=\frac{\boldsymbol{T}^{\prime}(t)}{\left|\boldsymbol{T}^{\prime}(t)\right|}=$ principal unit normal
$\boldsymbol{B}(t)=\boldsymbol{T}(t) \times \boldsymbol{N}(t)=$ binormal
Normal Plane: Plane thru a point on the curve and orthogonal to any tangent vector at that point.

Osculating Plane:

Plane thru a point on the curve and parallel to both $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{r}^{\prime \prime}(t)$.

Entry Task:
$\boldsymbol{r}(t)=<2 \sin (3 t), t, 2 \cos (3 t)>$
Compute

1. $\boldsymbol{r}^{\prime}(t)$
2. $\boldsymbol{r}^{\prime \prime}(t)$
3.T(t)
3. $\boldsymbol{N}(t)$
4. $B(t)$
5. At $t=\pi$, give the tangent line.
6. At $t=\pi$, give the normal plane.
7. At $t=\pi$, give the oscullating plane.

TNB Notes:

- T, N, and B always have length one.
- The tangent line is:
(a) parallel to $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{T}(t)$.
(b) orthogonal to $\boldsymbol{N}(t)$ and $\boldsymbol{B}(t)$.
- The normal plane is:
(a) parallel to $\boldsymbol{N}(t)$ and $\boldsymbol{B}(t)$.
(b) orthogonal to $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{T}(t)$.
- The osculating (kissing) plane is:
(a) parallel to $\boldsymbol{T}(t), \boldsymbol{r}^{\prime}(t), \boldsymbol{N}(t), \& \boldsymbol{r}^{\prime \prime}(t)$.
(b) orthogonal to $\boldsymbol{B}(t)$ and $\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)$.

13.4 Position, Velocity, Acceleration

If $\boldsymbol{t}=\boldsymbol{t i m e}$ and position is given by

$$
\boldsymbol{r}(t)=<x(t), y(t), z(t)>
$$

then

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t)= & \lim _{h \rightarrow 0} \frac{\boldsymbol{r}(t+h)-\boldsymbol{r}(t)}{h} \\
& =\frac{\text { change in position }}{\text { change in time }} \\
& =\text { velocity }=\boldsymbol{v}(t)
\end{aligned}
$$

$$
\left|\boldsymbol{r}^{\prime}(\boldsymbol{t})\right|=\frac{\text { change in dist }}{\text { change in time }}=\text { speed }
$$

and

$$
\begin{aligned}
\boldsymbol{r}^{\prime \prime}(t)= & \lim _{h \rightarrow 0} \frac{\boldsymbol{r}^{\prime}(t+h)-\boldsymbol{r}^{\prime}(t)}{h} \\
& =\frac{\text { change in velocity }}{\text { change in time }} \\
& =\text { acceleration }=\boldsymbol{a}(t)
\end{aligned}
$$

Let t be time in seconds and assume the position of an object (in feet) is given by

$$
\boldsymbol{r}(t)=<t, 2 e^{-t}, 0>
$$

Compute

1. $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{r}^{\prime \prime}(t)$
2. $\boldsymbol{r}^{\prime}(0)$ and $\boldsymbol{r}^{\prime \prime}(0)$
3. Give the oscullating plane at $t=0$. (no work needed)

HUGE application:

Modeling ANY motion problem.
Newton's $2^{\text {nd }}$ Law of Motion states
Force $=$ mass \cdot acceleration

$$
\boldsymbol{F}=m \cdot \boldsymbol{a}
$$

If $\boldsymbol{F}=\langle 0,0,0\rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant)

If $\boldsymbol{F} \neq\langle 0,0,0\rangle$, then acceleration will occur, and we integrate to find velocity and position.

Example:
A ball with mass $m=0.8 \mathrm{~kg}$ is thrown northward into the air with initial speed of $30 \mathrm{~m} / \mathrm{sec}$ at an angle of 30 degrees with the ground.
A west wind applies a steady force of 4 N on the ball (west to east).
If you are standing on level ground, where does the ball land?

Steps (for all motion problems):

1. Forces?
2. Get acceleration.
3. Integrate to get $\overrightarrow{\boldsymbol{v}}(t)$ (initial conditions?)
4. Integrate again to get $\overrightarrow{\boldsymbol{r}}(t)$ (initial conditions?)

Measuring and describing acceleration

Recall: $\operatorname{comp}_{\boldsymbol{b}}(\boldsymbol{a})=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{b}}=$ length. We define the tangential and normal components of acceleration by:
$a_{T}=\operatorname{comp}_{\boldsymbol{T}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{T}=$ tangential
$a_{N}=\operatorname{comp}_{\boldsymbol{N}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{N}=$ normal

Note that: $\boldsymbol{a}=a_{T} \boldsymbol{T}+a_{N} \boldsymbol{N}$

Derivation of interpretation: Let $v(t)=|\vec{v}(t)|=$ speed.

1. $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{v}}(t)}{v(t)}$ implies $\overrightarrow{\boldsymbol{v}}=v \overrightarrow{\boldsymbol{T}}$.
2. $\kappa(t)=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|}{\nu(t)}$ implies $\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\kappa \nu$.
3. $\stackrel{\rightharpoonup}{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}}{\kappa v}$, implies $\overrightarrow{\boldsymbol{T}}^{\prime}=\kappa v \stackrel{\rightharpoonup}{\boldsymbol{N}}$.

Differentiating the first fact above gives

$$
\begin{gathered}
\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+v \overrightarrow{\boldsymbol{T}}^{\prime}, \text { so } \\
\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+k v^{2} \stackrel{\rightharpoonup}{\boldsymbol{N}} .
\end{gathered}
$$

Conclusion
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

For computational purposes, we use

$$
a_{T}=\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \text { and } a_{T}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle\cos (t), \sin (t), t\rangle
$$

Find the tangential and normal components of acceleration.

