Closing Tue:13.3(2)Closing Thu:13.4, 14.1Midterm 1 will be returned Tuesday.

Summary of TNB-Frame Facts:

Given $r(t) = \langle x(t), y(t), z(t) \rangle$ $T(t) = \frac{r'(t)}{|r'(t)|} = \text{unit tangent}$ $N(t) = \frac{T'(t)}{|T'(t)|} = \text{principal unit normal}$ $B(t) = T(t) \times N(t) = \text{binormal}$

Normal Plane: Plane thru a point on the curve and orthogonal to any tangent vector at that point.

Osculating Plane:

Plane thru a point on the curve and parallel to both r'(t) and r''(t).

Entry Task: $r(t) = \langle 2 \sin(3t), t, 2\cos(3t) \rangle$ Compute 1.r'(t) 2.r''(t) 3.T(t) 4.N(t) 5.B(t) $6.At t = \pi$, give the tangent line. $7.At t = \pi$, give the normal plane. $8.At t = \pi$, give the oscullating plane.

TNB Notes:

- T, N, and B always have length one.
- The **tangent line** is:
 - (a) parallel to r'(t) and T(t).
 - (b) orthogonal to N(t) and B(t).
- The normal plane is:
 - (a) parallel to N(t) and B(t).
 - (b) orthogonal to r'(t) and T(t).
- The **osculating** (kissing) **plane** is:
 - (a) parallel to T(t), r'(t), N(t), & r''(t).
 - (b) orthogonal to $\boldsymbol{B}(t)$ and $\boldsymbol{r}'(t) \times \boldsymbol{r}''(t)$.

13.4 Position, Velocity, Acceleration

If t = time and position is given by $r(t) = \langle x(t), y(t), z(t) \rangle$ then

$$r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$
$$= \frac{\text{change in position}}{\text{change in time}}$$
$$= \text{velocity} = v(t)$$

$$|\mathbf{r}'(\mathbf{t})| = \frac{\text{change in dist}}{\text{change in time}} = \text{speed}$$

$$r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$$
$$= \frac{\text{change in velocity}}{\text{change in time}}$$
$$= \operatorname{acceleration} = \boldsymbol{a}(t)$$

Let *t* be **time in seconds** and assume the position of an object (in **feet**) is given by

$$r(t) = < t, 2e^{-t}, 0 >$$

Compute

1.
$$m{r}'(t)$$
 and $m{r}''(t)$

- 2. $m{r}'(0)$ and $m{r}''(0)$
- 3. Give the oscullating plane at *t* = 0. (no work needed)

HUGE application: Modeling ANY motion problem.

Newton's 2nd Law of Motion states Force = mass \cdot acceleration $F = m \cdot a$

If $F = \langle 0,0,0 \rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant)

If $F \neq \langle 0,0,0 \rangle$, then acceleration will occur, and we integrate to find velocity and position.

Example:

A ball with mass *m* = 0.8 kg is thrown northward into the air with initial speed of 30 m/sec at an angle of 30 degrees with the ground.

A west wind applies a steady force of 4 N on the ball (west to east).

If you are standing on level ground, where does the ball land?

Steps (for *all* motion problems):

- 1. Forces?
- 2. Get acceleration.
- 3. Integrate to get $\vec{v}(t)$ (initial conditions?)
- 4. Integrate again to get $\vec{r}(t)$ (initial conditions?)

Measuring and describing acceleration

Recall: $\operatorname{comp}_b(a) = \frac{a \cdot b}{b}$ = length. We define the tangential and normal components of acceleration by:

 $a_T = \operatorname{comp}_T(a) = a \cdot T$ = tangential $a_N = \operatorname{comp}_N(a) = a \cdot N$ = normal

Note that: $\boldsymbol{a} = a_T \boldsymbol{T} + a_N \boldsymbol{N}$

Derivation of interpretation: Let $v(t) = |\vec{v}(t)| = \text{speed}.$ $1.\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\vec{v}(t)}{v(t)} \text{ implies } \vec{v} = v\vec{T}.$ $2.\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{T}'|}{v(t)} \text{ implies } |\vec{T}'| = \kappa v.$ $3.\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{\vec{T}'}{\kappa v}, \text{ implies } \vec{T}' = \kappa v \vec{N}.$ Differentiating the first fact above gives $\vec{a} = \vec{v}' = v'\vec{T} + v\vec{T}', \text{ so}$ $\vec{a} = \vec{v}' = v'\vec{T} + kv^2\vec{N}.$ Conclusion

 $a_T = \nu' = \frac{d}{dt} |r'(t)| =$ "deriv. of speed" $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

For computational purposes, we use $a_T = \frac{\vec{r}' \cdot \vec{r}''}{|\vec{r}'|}$ and $a_T = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|}$ Example:

 $\vec{r}(t) = <\cos(t)$, $\sin(t)$, t >Find the tangential and normal

components of acceleration.